Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur Heart J Digit Health ; 5(1): 50-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264702

RESUMEN

Aims: Implantable cardioverter defibrillator (ICD) therapies have been associated with increased mortality and should be minimized when safe to do so. We hypothesized that machine learning-derived ventricular tachycardia (VT) cycle length (CL) variability metrics could be used to discriminate between sustained and spontaneously terminating VT. Methods and results: In this single-centre retrospective study, we analysed data from 69 VT episodes stored on ICDs from 27 patients (36 spontaneously terminating VT, 33 sustained VT). Several VT CL parameters including heart rate variability metrics were calculated. Additionally, a first order auto-regression model was fitted using the first 10 CLs. Using features derived from the first 10 CLs, a random forest classifier was used to predict VT termination. Sustained VT episodes had more stable CLs. Using data from the first 10 CLs only, there was greater CL variability in the spontaneously terminating episodes (mean of standard deviation of first 10 CLs: 20.1 ± 8.9 vs. 11.5 ± 7.8 ms, P < 0.0001). The auto-regression coefficient was significantly greater in spontaneously terminating episodes (mean auto-regression coefficient 0.39 ± 0.32 vs. 0.14 ± 0.39, P < 0.005). A random forest classifier with six features yielded an accuracy of 0.77 (95% confidence interval 0.67 to 0.87) for prediction of VT termination. Conclusion: Ventricular tachycardia CL variability and instability are associated with spontaneously terminating VT and can be used to predict spontaneous VT termination. Given the harmful effects of unnecessary ICD shocks, this machine learning model could be incorporated into ICD algorithms to defer therapies for episodes of VT that are likely to self-terminate.

2.
J R Soc Interface ; 20(207): 20230443, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817583

RESUMEN

Understanding the mechanism sustaining cardiac fibrillation can facilitate the personalization of treatment. Granger causality analysis can be used to determine the existence of a hierarchical fibrillation mechanism that is more amenable to ablation treatment in cardiac time-series data. Conventional Granger causality based on linear predictability may fail if the assumption is not met or given sparsely sampled, high-dimensional data. More recently developed information theory-based causality measures could potentially provide a more accurate estimate of the nonlinear coupling. However, despite their successful application to linear and nonlinear physical systems, their use is not known in the clinical field. Partial mutual information from mixed embedding (PMIME) was implemented to identify the direct coupling of cardiac electrophysiology signals. We show that PMIME requires less data and is more robust to extrinsic confounding factors. The algorithms were then extended for efficient characterization of fibrillation organization and hierarchy using clinical high-dimensional data. We show that PMIME network measures correlate well with the spatio-temporal organization of fibrillation and demonstrated that hierarchical type of fibrillation and drivers could be identified in a subset of ventricular fibrillation patients, such that regions of high hierarchy are associated with high dominant frequency.


Asunto(s)
Algoritmos , Teoría de la Información , Humanos , Dinámicas no Lineales
3.
Artículo en Inglés | MEDLINE | ID: mdl-36867371

RESUMEN

BACKGROUND: Ablation of autonomic ectopy-triggering ganglionated plexuses (ET-GP) has been used to treat paroxysmal atrial fibrillation (AF). It is not known if ET-GP localisation is reproducible between different stimulators or whether ET-GP can be mapped and ablated in persistent AF. We tested the reproducibility of the left atrial ET-GP location using different high-frequency high-output stimulators in AF. In addition, we tested the feasibility of identifying ET-GP locations in persistent atrial fibrillation. METHODS: Nine patients undergoing clinically-indicated paroxysmal AF ablation received pacing-synchronised high-frequency stimulation (HFS), delivered in SR during the left atrial refractory period, to compare ET-GP localisation between a custom-built current-controlled stimulator (Tau20) and a voltage-controlled stimulator (Grass S88, SIU5). Two patients with persistent AF underwent cardioversion, left atrial ET-GP mapping with the Tau20 and ablation (Precision™, Tacticath™ [n = 1] or Carto™, SmartTouch™ [n = 1]). Pulmonary vein isolation (PVI) was not performed. Efficacy of ablation at ET-GP sites alone without PVI was assessed at 1 year. RESULTS: The mean output to identify ET-GP was 34 mA (n = 5). Reproducibility of response to synchronised HFS was 100% (Tau20 vs Grass S88; [n = 16] [kappa = 1, SE = 0.00, 95% CI 1 to 1)][Tau20 v Tau20; [n = 13] [kappa = 1, SE = 0, 95% CI 1 to 1]). Two patients with persistent AF had 10 and 7 ET-GP sites identified requiring 6 and 3 min of radiofrequency ablation respectively to abolish ET-GP response. Both patients were free from AF for > 365 days without anti-arrhythmics. CONCLUSIONS: ET-GP sites are identified at the same location by different stimulators. ET-GP ablation alone was able to prevent AF recurrence in persistent AF, and further studies would be warranted.

4.
Europace ; 25(2): 726-738, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36260428

RESUMEN

AIMS: The response to high frequency stimulation (HFS) is used to locate putative sites of ganglionated plexuses (GPs), which are implicated in triggering atrial fibrillation (AF). To identify topological and immunohistochemical characteristics of presumed GP sites functionally identified by HFS. METHODS AND RESULTS: Sixty-three atrial sites were tested with HFS in four Langendorff-perfused porcine hearts. A 3.5 mm tip quadripolar ablation catheter was used to stimulate and deliver HFS to the left and right atrial epicardium, within the local atrial refractory period. Tissue samples from sites triggering atrial ectopy/AF (ET) sites and non-ET sites were stained with choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH), for quantification of parasympathetic and sympathetic nerves, respectively. The average cross-sectional area (CSA) of nerves was also calculated. Histomorphometry of six ET sites (9.5%) identified by HFS evoking at least a single atrial ectopic was compared with non-ET sites. All ET sites contained ChAT-immunoreactive (ChAT-IR) and/or TH-immunoreactive nerves (TH-IR). Nerve density was greater in ET sites compared to non-ET sites (nerves/cm2: 162.3 ± 110.9 vs. 69.65 ± 72.48; P = 0.047). Overall, TH-IR nerves had a larger CSA than ChAT-IR nerves (µm2: 11 196 ± 35 141 vs. 2070 ± 5841; P < 0.0001), but in ET sites, TH-IR nerves were smaller than in non-ET sites (µm2: 6021 ± 14 586 vs. 25 254 ± 61 499; P < 0.001). CONCLUSIONS: ET sites identified by HFS contained a higher density of smaller nerves than non-ET sites. The majority of these nerves were within the atrial myocardium. This has important clinical implications for devising an effective therapeutic strategy for targeting autonomic triggers of AF.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Animales , Porcinos , Fibrilación Atrial/cirugía , Atrios Cardíacos , Miocardio , Sistema Nervioso Autónomo , Ablación por Catéter/métodos
5.
Eur Heart J Digit Health ; 3(3): 405-414, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36712163

RESUMEN

Aims: Accurately determining atrial arrhythmia mechanisms from a 12-lead electrocardiogram (ECG) can be challenging. Given the high success rate of cavotricuspid isthmus (CTI) ablation, identification of CTI-dependent typical atrial flutter (AFL) is important for treatment decisions and procedure planning. We sought to train a convolutional neural network (CNN) to classify CTI-dependent AFL vs. non-CTI dependent atrial tachycardia (AT), using data from the invasive electrophysiology (EP) study as the gold standard. Methods and results: We trained a CNN on data from 231 patients undergoing EP studies for atrial tachyarrhythmia. A total of 13 500 five-second 12-lead ECG segments were used for training. Each case was labelled CTI-dependent AFL or non-CTI-dependent AT based on the findings of the EP study. The model performance was evaluated against a test set of 57 patients. A survey of electrophysiologists in Europe was undertaken on the same 57 ECGs. The model had an accuracy of 86% (95% CI 0.77-0.95) compared to median expert electrophysiologist accuracy of 79% (range 70-84%). In the two thirds of test set cases (38/57) where both the model and electrophysiologist consensus were in agreement, the prediction accuracy was 100%. Saliency mapping demonstrated atrial activation was the most important segment of the ECG for determining model output. Conclusion: We describe the first CNN trained to differentiate CTI-dependent AFL from other AT using the ECG. Our model matched and complemented expert electrophysiologist performance. Automated artificial intelligence-enhanced ECG analysis could help guide treatment decisions and plan ablation procedures for patients with organized atrial arrhythmias.

6.
Front Physiol ; 12: 712454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858198

RESUMEN

Background: Atrial fibrillation (AF) and ventricular fibrillation (VF) are complex heart rhythm disorders and may be sustained by distinct electrophysiological mechanisms. Disorganised self-perpetuating multiple-wavelets and organised rotational drivers (RDs) localising to specific areas are both possible mechanisms by which fibrillation is sustained. Determining the underlying mechanisms of fibrillation may be helpful in tailoring treatment strategies. We investigated whether global fibrillation organisation, a surrogate for fibrillation mechanism, can be determined from electrocardiograms (ECGs) using band-power (BP) feature analysis and machine learning. Methods: In this study, we proposed a novel ECG classification framework to differentiate fibrillation organisation levels. BP features were derived from surface ECGs and fed to a linear discriminant analysis classifier to predict fibrillation organisation level. Two datasets, single-channel ECGs of rat VF (n = 9) and 12-lead ECGs of human AF (n = 17), were used for model evaluation in a leave-one-out (LOO) manner. Results: The proposed method correctly predicted the organisation level from rat VF ECG with the sensitivity of 75%, specificity of 80%, and accuracy of 78%, and from clinical AF ECG with the sensitivity of 80%, specificity of 92%, and accuracy of 88%. Conclusion: Our proposed method can distinguish between AF/VF of different global organisation levels non-invasively from the ECG alone. This may aid in patient selection and guiding mechanism-directed tailored treatment strategies.

7.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369384

RESUMEN

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Miocardio/citología , Ingeniería de Tejidos/métodos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/prevención & control , Procedimientos Quirúrgicos Cardíacos , Regeneración Tisular Dirigida/métodos , Insuficiencia Cardíaca/prevención & control , Insuficiencia Cardíaca/terapia , Humanos , Hidrogeles/uso terapéutico , Células Madre Pluripotentes Inducidas , Contracción Miocárdica/fisiología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Conejos
8.
J Am Heart Assoc ; 10(9): e020006, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33870715

RESUMEN

Background Survivors of myocardial infarction are at increased risk of late ventricular arrhythmias, with infarct size and scar heterogeneity being key determinants of arrhythmic risk. Gap junctions facilitate the passage of small ions and morphogenic cell signaling between myocytes. We hypothesized that gap junctions enhancement during infarction-reperfusion modulates structural and electrophysiological remodeling and reduces late arrhythmogenesis. Methods and Results Infarction-reperfusion surgery was carried out in male Sprague-Dawley rats followed by 7 days of rotigaptide or saline administration. The in vivo and ex vivo arrhythmogenicity was characterized by programmed electrical stimulation 3 weeks later, followed by diffusion-weighted magnetic resonance imaging and Masson's trichrome histology. Three weeks after 7-day postinfarction administration of rotigaptide, ventricular tachycardia/ventricular fibrillation was induced on programmed electrical stimulation in 20% and 53% of rats, respectively (rotigaptide versus control), resulting in reduction of arrhythmia score (3.2 versus 1.4, P=0.018), associated with the reduced magnetic resonance imaging parameters fractional anisotropy (fractional anisotropy: -5% versus -15%; P=0.062) and mean diffusivity (mean diffusivity: 2% versus 6%, P=0.042), and remodeling of the 3-dimensional laminar structure of the infarct border zone with reduction of the mean (16° versus 19°, P=0.013) and the dispersion (9° versus 12°, P=0.015) of the myofiber transverse angle. There was no change in ECG features, spontaneous arrhythmias, or mortality. Conclusions Enhancement of gap junctions function by rotigaptide administered during the early healing phase in reperfused infarction reduces later complexity of infarct scar morphology and programmed electrical stimulation-induced arrhythmias, and merits further exploration as a feasible and practicable intervention in the acute myocardial infarction management to reduce late arrhythmic risk.


Asunto(s)
Arritmias Cardíacas/etiología , Técnicas Electrofisiológicas Cardíacas/métodos , Imagen por Resonancia Cinemagnética/métodos , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Oligopéptidos/administración & dosificación , Remodelación Ventricular/fisiología , Animales , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Infusiones Intravenosas , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Ratas , Ratas Sprague-Dawley , Índice de Severidad de la Enfermedad , Factores de Tiempo
9.
Cardiovasc Res ; 117(4): 1078-1090, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-32402067

RESUMEN

AIMS: Conflicting data exist supporting differing mechanisms for sustaining ventricular fibrillation (VF), ranging from disorganized multiple-wavelet activation to organized rotational activities (RAs). Abnormal gap junction (GJ) coupling and fibrosis are important in initiation and maintenance of VF. We investigated whether differing ventricular fibrosis patterns and the degree of GJ coupling affected the underlying VF mechanism. METHODS AND RESULTS: Optical mapping of 65 Langendorff-perfused rat hearts was performed to study VF mechanisms in control hearts with acute GJ modulation, and separately in three differing chronic ventricular fibrosis models; compact fibrosis (CF), diffuse fibrosis (DiF), and patchy fibrosis (PF). VF dynamics were quantified with phase mapping and frequency dominance index (FDI) analysis, a power ratio of the highest amplitude dominant frequency in the cardiac frequency spectrum. Enhanced GJ coupling with rotigaptide (n = 10) progressively organized fibrillation in a concentration-dependent manner; increasing FDI (0 nM: 0.53 ± 0.04, 80 nM: 0.78 ± 0.03, P < 0.001), increasing RA-sustained VF time (0 nM: 44 ± 6%, 80 nM: 94 ± 2%, P < 0.001), and stabilized RAs (maximum rotations for an RA; 0 nM: 5.4 ± 0.5, 80 nM: 48.2 ± 12.3, P < 0.001). GJ uncoupling with carbenoxolone progressively disorganized VF; the FDI decreased (0 µM: 0.60 ± 0.05, 50 µM: 0.17 ± 0.03, P < 0.001) and RA-sustained VF time decreased (0 µM: 61 ± 9%, 50 µM: 3 ± 2%, P < 0.001). In CF, VF activity was disorganized and the RA-sustained VF time was the lowest (CF: 27 ± 7% vs. PF: 75 ± 5%, P < 0.001). Global fibrillatory organization measured by FDI was highest in PF (PF: 0.67 ± 0.05 vs. CF: 0.33 ± 0.03, P < 0.001). PF harboured the longest duration and most spatially stable RAs (patchy: 1411 ± 266 ms vs. compact: 354 ± 38 ms, P < 0.001). DiF (n = 11) exhibited an intermediately organized VF pattern, sustained by a combination of multiple-wavelets and short-lived RAs. CONCLUSION: The degree of GJ coupling and pattern of fibrosis influences the mechanism sustaining VF. There is a continuous spectrum of organization in VF, ranging between globally organized fibrillation sustained by stable RAs and disorganized, possibly multiple-wavelet driven fibrillation with no RAs.


Asunto(s)
Potenciales de Acción , Uniones Comunicantes/patología , Ventrículos Cardíacos/patología , Fibrilación Ventricular/patología , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Fibrosis , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Preparación de Corazón Aislado , Modelos Cardiovasculares , Ratas Sprague-Dawley , Factores de Tiempo , Fibrilación Ventricular/fisiopatología , Imagen de Colorante Sensible al Voltaje
10.
Front Physiol ; 11: 987, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013435

RESUMEN

Current treatment approaches for persistent atrial fibrillation (AF) have a ceiling of success of around 50%. This is despite 15 years of developing adjunctive ablation strategies in addition to pulmonary vein isolation to target the underlying arrhythmogenic substrate in AF. A major shortcoming of our current approach to AF treatment is its predominantly empirical nature. This has in part been due to a lack of consensus on the mechanisms that sustain human AF. In this article, we review evidence suggesting that the previous debates on AF being either an organized arrhythmia with a focal driver or a disorganized rhythm sustained by multiple wavelets, may prove to be a false dichotomy. Instead, a range of fibrillation electrophenotypes exists along a continuous spectrum, and the predominant mechanism in an individual case is determined by the nature and extent of remodeling of the underlying substrate. We propose moving beyond the current empirical approach to AF treatment, highlight the need to prescribe AF treatments based on the underlying AF electrophenotype, and review several possible novel mapping algorithms that may be useful in discerning the AF electrophenotype to guide tailored treatments, including Granger Causality mapping.

11.
Pflugers Arch ; 472(10): 1435-1446, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32870378

RESUMEN

We describe a human and large animal Langendorff experimental apparatus for live electrophysiological studies and measure the electrophysiological changes due to gap junction uncoupling in human and porcine hearts. The resultant ex vivo intact human and porcine model can bridge the translational gap between smaller simple laboratory models and clinical research. In particular, electrophysiological models would benefit from the greater myocardial mass of a large heart due to its effects on far-field signal, electrode contact issues and motion artefacts, consequently more closely mimicking the clinical setting. Porcine (n = 9) and human (n = 4) donor hearts were perfused on a custom-designed Langendorff apparatus. Epicardial electrograms were collected at 16 sites across the left atrium and left ventricle. A total of 1 mM of carbenoxolone was administered at 5 ml/min to induce cellular uncoupling, and then recordings were repeated at the same sites. Changes in electrogram characteristics were analysed. We demonstrate the viability of a controlled ex vivo model of intact porcine and human hearts for electrophysiology with pharmacological modulation. Carbenoxolone reduces cellular coupling and changes contact electrogram features. The time from stimulus artefact to (-dV/dt)max increased between baseline and carbenoxolone (47.9 ± 4.1-67.2 ± 2.7 ms) indicating conduction slowing. The features with the largest percentage change between baseline and carbenoxolone were fractionation + 185.3%, endpoint amplitude - 106.9%, S-endpoint gradient + 54.9%, S point - 39.4%, RS ratio + 38.6% and (-dV/dt)max - 20.9%. The physiological relevance of this methodological tool is that it provides a model to further investigate pharmacologically induced pro-arrhythmic substrates.


Asunto(s)
Corazón/fisiología , Preparación de Corazón Aislado/métodos , Adulto , Animales , Carbenoxolona/farmacología , Electrocardiografía/métodos , Acoplamiento Excitación-Contracción , Femenino , Corazón/efectos de los fármacos , Humanos , Preparación de Corazón Aislado/instrumentación , Masculino , Miocardio/metabolismo , Porcinos
13.
Circ Arrhythm Electrophysiol ; 13(3): e008237, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32064900

RESUMEN

BACKGROUND: The mechanisms sustaining myocardial fibrillation remain disputed, partly due to a lack of mapping tools that can accurately identify the mechanism with low spatial resolution clinical recordings. Granger causality (GC) analysis, an econometric tool for quantifying causal relationships between complex time-series, was developed as a novel fibrillation mapping tool and adapted to low spatial resolution sequentially acquired data. METHODS: Ventricular fibrillation (VF) optical mapping was performed in Langendorff-perfused Sprague-Dawley rat hearts (n=18), where novel algorithms were developed using GC-based analysis to (1) quantify causal dependence of neighboring signals and plot GC vectors, (2) quantify global organization with the causality pairing index, a measure of neighboring causal signal pairs, and (3) localize rotational drivers (RDs) by quantifying the circular interdependence of neighboring signals with the circular interdependence value. GC-based mapping tools were optimized for low spatial resolution from downsampled optical mapping data, validated against high-resolution phase analysis and further tested in previous VF optical mapping recordings of coronary perfused donor heart left ventricular wedge preparations (n=12), and adapted for sequentially acquired intracardiac electrograms during human persistent atrial fibrillation mapping (n=16). RESULTS: Global VF organization quantified by causality pairing index showed a negative correlation at progressively lower resolutions (50% resolution: P=0.006, R2=0.38, 12.5% resolution, P=0.004, R2=0.41) with a phase analysis derived measure of disorganization, locations occupied by phase singularities. In organized VF with high causality pairing index values, GC vector mapping characterized dominant propagating patterns and localized stable RDs, with the circular interdependence value showing a significant difference in driver versus nondriver regions (0.91±0.05 versus 0.35±0.06, P=0.0002). These findings were further confirmed in human VF. In persistent atrial fibrillation, a positive correlation was found between the causality pairing index and presence of stable RDs (P=0.0005,R2=0.56). Fifty percent of patients had RDs, with a low incidence of 0.9±0.3 RDs per patient. CONCLUSIONS: GC-based fibrillation analysis can measure global fibrillation organization, characterize dominant propagating patterns, and map RDs using low spatial resolution sequentially acquired data.


Asunto(s)
Fibrilación Atrial/fisiopatología , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Animales , Fibrilación Atrial/cirugía , Modelos Animales de Enfermedad , Ratas , Ratas Sprague-Dawley
14.
Sci Rep ; 9(1): 16671, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723154

RESUMEN

The analysis of complex mechanisms underlying ventricular fibrillation (VF) and atrial fibrillation (AF) requires sophisticated tools for studying spatio-temporal action potential (AP) propagation dynamics. However, fibrillation analysis tools are often custom-made or proprietary, and vary between research groups. With no optimal standardised framework for analysis, results from different studies have led to disparate findings. Given the technical gap, here we present a comprehensive framework and set of principles for quantifying properties of wavefront dynamics in phase-processed data recorded during myocardial fibrillation with potentiometric dyes. Phase transformation of the fibrillatory data is particularly useful for identifying self-perpetuating spiral waves or rotational drivers (RDs) rotating around a phase singularity (PS). RDs have been implicated in sustaining fibrillation, and thus accurate localisation and quantification of RDs is crucial for understanding specific fibrillatory mechanisms. In this work, we assess how variation of analysis parameters and thresholds in the tracking of PSs and quantification of RDs could result in different interpretations of the underlying fibrillation mechanism. These techniques have been described and applied to experimental AF and VF data, and AF simulations, and examples are provided from each of these data sets to demonstrate the range of fibrillatory behaviours and adaptability of these tools. The presented methodologies are available as an open source software and offer an off-the-shelf research toolkit for quantifying and analysing fibrillatory mechanisms.


Asunto(s)
Potenciales de Acción , Fibrilación Atrial/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Modelos Cardiovasculares , Fibrilación Ventricular/fisiopatología , Simulación por Computador , Humanos
15.
Front Cardiovasc Med ; 6: 34, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001543

RESUMEN

Background: Dissimilar ventricular rhythms refer to the occurrence of different ventricular tachyarrhythmias in the right and left ventricles or different rates of the same tachyarrhythmia in the two ventricles. Objective: We investigated the inducibility of dissimilar ventricular rhythms, their underlying mechanisms, and the impact of anti-arrhythmic drugs (lidocaine and amiodarone) on their occurrence. Methods: Ventricular tachyarrhythmias were induced with burst pacing in 28 Langendorff-perfused Sprague Dawley rat hearts (14 control, 8 lidocaine, 6 amiodarone) and bipolar electrograms recorded from the right and left ventricles. Fourteen (6 control, 4 lidocaine, 4 amiodarone) further hearts underwent optical mapping of transmembrane voltage to study interventricular electrophysiological differences and mechanisms of dissimilar rhythms. Results: In control hearts, dissimilar ventricular rhythms developed in 8/14 hearts (57%). In lidocaine treated hearts, there was a lower cycle length threshold for developing dissimilar rhythms, with 8/8 (100%) hearts developing dissimilar rhythms in comparison to 0/6 in the amiodarone group. Dissimilar ventricular tachycardia (VT) rates occurred at longer cycle lengths with lidocaine vs. control (57.1 ± 7.9 vs. 36.6 ± 8.4 ms, p < 0.001). The ratio of LV:RV VT rate was greater in the lidocaine group than control (1.91 ± 0.30 vs. 1.76 ± 0.36, p < 0.001). The gradient of the action potential duration (APD) restitution curve was shallower in the RV compared with LV (Control - LV: 0.12 ± 0.03 vs RV: 0.002 ± 0.03, p = 0.015), leading to LV-to-RV conduction block during VT. Conclusion: Interventricular differences in APD restitution properties likely contribute to the occurrence of dissimilar rhythms. Sodium channel blockade with lidocaine increases the likelihood of dissimilar ventricular rhythms.

16.
J Mol Cell Cardiol ; 129: 118-129, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771309

RESUMEN

Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Regulación de la Expresión Génica , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citoprotección/efectos de los fármacos , Doxorrubicina/farmacología , Activación Enzimática/efectos de los fármacos , Genes Inmediatos-Precoces , Peróxido de Hidrógeno/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
17.
Comput Biol Med ; 102: 315-326, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025847

RESUMEN

Atrial and ventricular fibrillation are complex arrhythmias, and their underlying mechanisms remain widely debated and incompletely understood. This is partly because the electrical signals recorded during myocardial fibrillation are themselves complex and difficult to interpret with simple analytical tools. There are currently a number of analytical approaches to handle fibrillation data. Some of these techniques focus on mapping putative drivers of myocardial fibrillation, such as dominant frequency, organizational index, Shannon entropy and phase mapping. Other techniques focus on mapping the underlying myocardial substrate sustaining fibrillation, such as voltage mapping and complex fractionated electrogram mapping. In this review, we discuss these techniques, their application and their limitations, with reference to our experimental and clinical data. We also describe novel tools including a new algorithm to map microreentrant circuits sustaining fibrillation.


Asunto(s)
Fibrilación Atrial/diagnóstico por imagen , Electrocardiografía , Corazón/diagnóstico por imagen , Miocardio/patología , Fibrilación Ventricular/diagnóstico por imagen , Algoritmos , Animales , Línea Celular , Técnicas Electrofisiológicas Cardíacas/métodos , Entropía , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Procesamiento de Señales Asistido por Computador
18.
J Biol Chem ; 284(40): 27195-210, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19638633

RESUMEN

The Mdm2 ubiquitin ligase is an important regulator of p53 abundance and p53-dependent apoptosis. Mdm2 expression is frequently regulated by a p53 Mdm2 autoregulatory loop whereby p53 stimulates Mdm2 expression and hence its own degradation. Although extensively studied in cell lines, relatively little is known about Mdm2 expression in heart where oxidative stress (exacerbated during ischemia-reperfusion) is an important pro-apoptotic stimulus. We demonstrate that Mdm2 transcript and protein expression are induced by oxidative stress (0.2 mm H(2)O(2)) in neonatal rat cardiac myocytes. In other cells, constitutive Mdm2 expression is regulated by the P1 promoter (5' to exon 1), with inducible expression regulated by the P2 promoter (in intron 1). In myocytes, H(2)O(2) increased Mdm2 expression from the P2 promoter, which contains two p53-response elements (REs), one AP-1 RE, and two Ets REs. H(2)O(2) did not detectably increase expression of p53 mRNA or protein but did increase expression of several AP-1 transcription factors. H(2)O(2) increased binding of AP-1 proteins (c-Jun, JunB, JunD, c-Fos, FosB, and Fra-1) to an Mdm2 AP-1 oligodeoxynucleotide probe, and chromatin immunoprecipitation assays showed it increased binding of c-Jun or JunB to the P2 AP-1 RE. Finally, antisense oligonucleotide-mediated reduction of H(2)O(2)-induced Mdm2 expression increased caspase 3 activation. Thus, increased Mdm2 expression is associated with transactivation at the P2 AP-1 RE (rather than the p53 or Ets REs), and Mdm2 induction potentially represents a cardioprotective response to oxidative stress.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Homología de Secuencia de Aminoácido , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Caspasa 3/metabolismo , Humanos , Intrones/genética , Ratones , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Elementos de Respuesta , Factor de Transcripción AP-1/genética , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...